
Ergodic Theory - Week 2

Course Instructor: Florian K. Richter
Teaching assistant: Konstantinos Tsinas

1 Von Neumann’s Mean Ergodic Theorem

P1. Let (X,A, µ, T ) be a measure-preserving system.

(a) Let A,B ∈ A. Show that if (X,A, µ, T ) is ergodic then

µ(A)−
√
µ(A)(1− µ(B)) ≤ lim sup

n→∞
µ(T−nA∩B) and lim inf

n→∞
µ(T−nA∩B) ≤

√
µ(A)µ(B).

By the mean ergodic theorem, we have that

ĺım
N→∞

1

N

N∑
n=1

µ(T−nA ∩B) = µ(A)µ(B).

On the other hand, we have that

µ(A)−
√

µ(A)(1− µ(B)) ≤ µ(A)µ(B) ≤
√
µ(A)µ(B),

given that µ(A), µ(B) ∈ [0, 1] and for x ∈ [0, 1], x ≤
√
x. Hence, we have

µ(A)−
√

µ(A)(1− µ(B)) ≤ ĺım
N→∞

1

N

N∑
n=1

µ(T−nA ∩B) ≤
√

µ(A)µ(B),

from where the inequalities follow.

(b) Let f ∈ L2(X,A, µ). Show that the limit

ĺım
N→∞

1

N

N−1∑
n=0

∫
Tnf · fdµ

exists, is real, and is greater than or equal to |
∫
fdµ|2.

By the mean ergodic theorem, we have that 1
N

∑N
n=1 T

nf → finv as N → ∞, in L2(µ).
Therefore, using the dominated convergence theorem to swap the limit and the integral,
we have

ĺım
N→∞

1

N

N−1∑
n=0

∫
Tnf · fdµ = ĺım

N→∞

∫
1

N

N−1∑
n=0

Tnf · fdµ =

∫
finv · f.

On the other hand, notice that f = finv + ferg. So, we have that∫
finv · f dµ =

∫
|finv|2 dµ+

∫
finv · ferg dµ =

∫
|finv|2 dµ.
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Here, we used the fact that ferg is orthogonal to finv. We conclude that the limit exists
and is real and equal to

∫
|finv|2dµ. All that is left is to prove that is greater than or equal

to |
∫
fdµ|2. Since 1 is invariant, we have that

0 = ⟨1, ferg⟩ =
∫

ferg dµ.

Thus, the Cauchy-Schwarz inequality yields∣∣∣∣∫ f dµ

∣∣∣∣2 = (∫ finv dµ

)2

≤
∫

|finv|2dµ.

P2. (a) Show that the circle rotation system (T,BT,m,Rα) is ergodic if and only if α ∈ R \Q.

If α ∈ Q, then let n ∈ N be such that nα ∈ Z. Then, define f(t) = e2πtn and notice that
Rαf = f but f is not constant. Hence, the system is not ergodic.

Assume now that α irrational and let f ∈ L2(T) be a Rα-invariant function. We write its
Fourier expansion

f(t) =
∑
n∈Z

cne(nt).

Here, the equality and convergence is understood to be in L2(T). The fact that f is Ra

invariant yields ∑
n∈Z

cne(nα)e(nt) =
∑
n∈Z

cne(nt).

Given the uniqueness of the Fourier coefficients, we conclude that cne(nα) = cn. Further-
more, we have e(na) ̸= 1 for all n ∈ N, since α is irrational. This implies that for all
n ̸= 0 we have cn = 0. Thus, f = c0 almost everywhere. We conclude that the system is
ergodic.

(b) Show that the circle doubling system (T,BT,m, T2), where T2(x) = 2x mod 1, is er-
godic.

More generally, we will show that the map Tpx = px (mod 1) is ergodic for any p ∈ N with
p > 1. Let f ∈ L2(T) be a Tp-invariant function. Again, writing its Fourier expansion

f(t) =
∑
n∈Z

cne(nt),

and using the fact that f ◦ Tp = f we get that∑
n∈Z

cne(pnt) =
∑
n∈Z

cne(nt).

By the uniqueness of the Fourier coefficients, we get that

cn =

{
cn/p, if n ∈ pZ
0, otherwise.

In particular, for every n ∈ Z, cn = cpn. We prove that cn = 0 for all n ̸= 0. Indeed, we
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recall Parseval’s identity:

∥f∥L2(T) =
∑
n∈Z

|cn|2,

which implies that the series on the right-hand side is convergent. Thus, cn becomes
arbitrarily small contradicting our previous equalities. To be more precise, if there is
n0 ∈ Z \ {0} such that cn0 ̸= 0, then

||f ||2L2(T) =
∑
m∈Z

|cm|2 ≥
∑
m∈Z

|cpmn0 |2 =
∑
m∈Z

|cn0 |2 = +∞,

which is a contradiction.

We conclude that cn = 0 for all n ̸= 0 and then f = c0 almost everywhere. This implies
that the system is ergodic.

P3. Let (X,A, µ, T ) be a measure-preserving system. We call (X,A, µ, T )mixing if for all A,B ∈ A,
we have ĺımN→∞ µ(T−NA ∩B) = µ(A)µ(B). Show that (X,A, µ, T ) is mixing if and only if for
all A ∈ A we have

ĺım
N→∞

µ(T−NA ∩A) = µ(A)2. (1)

Solution: If the system is mixing, then the statement of (1) follows trivially. For the non-
trivial implication, take A ∈ A. Instead of working with measurable sets, we will prove that
for all f ∈ L2(µ) we have that

ĺım
n→∞

∫
X
Tn1A · fdµ = µ(A) ·

∫
fdµ. (2)

Indeed, assuming we have proven (2), then plugging in f = 1B yields our claim.

This statement is trivially true when f is constant and it is also true when f = T k1A, since∫
Tn1A · T k1A dµ =

∫
Tn−k1A · 1A dµ = µ(A ∩ Tn−kA)

n→+∞−→ µ(A)2

by our hypothesis. This suggests to consider the closed sub-family H of L2(µ) generated by
linear combinations of functions in the sets {c : c ∈ R} and {T k1A | k ∈ N0}. More precisely,
we let

H := ⟨{c : c ∈ R} ∪ {T k1A | k ∈ N0}⟩.

Here, we are working in the Hilbert space L2(µ) with the topology generated by the L2-norm.
Therefore, when we consider the closure of the set above, we refer to limit points of functions
in the L2 sense.

The statement is valid in the family H. Firstly, the statement is valid in the family that
generates H, and by linearity, it is true for all finite linear combinations of functions in the
two generating sets. We need to prove that the statement is closed under taking limits. Let
(fn)n ⊆ L2(µ) be a sequence such that fn → f in L2(µ) and such that, for all n ∈ N, fn
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satisfies (2). Then,∣∣∣∣⟨1A ◦ Tn, f⟩ − µ(A)

∫
fdµ

∣∣∣∣
≤ |⟨1A ◦ Tn, f − fm⟩|+

∣∣∣∣⟨1A ◦ Tn, fm⟩ − µ(A)

∫
fmdµ

∣∣∣∣+ ∣∣∣∣µ(A) ∫ fmdµ− µ(A)

∫
fdµ

∣∣∣∣
≤ ||1A ◦ Tn||2 · ||f − fm||2 +

∣∣∣∣⟨1A ◦ Tn, fm⟩ − µ(A)

∫
fmdµ

∣∣∣∣+ µ(A)||fm − f ||2

= (1 + µ(A))||fm − f ||2 +
∣∣∣∣⟨1A ◦ Tn, fm⟩ − µ(A)

∫
fmdµ

∣∣∣∣ .
Taking lim supN→∞, the second term converges to zero because fm satisfies (2)and, then, if we
take ĺımM→∞ we get that the first term converges to zero by the assumption that fm converges
to f in L2(µ). We infer that

lim sup
N→∞

∣∣∣∣⟨1A ◦ Tn, f⟩ − µ(A)

∫
fdµ

∣∣∣∣ ≤ 0,

which implies that

ĺım
N→∞

∣∣∣∣⟨1A ◦ Tn, f⟩ − µ(A)

∫
fdµ

∣∣∣∣ = 0.

We have proved that all functions in H satisfy the statement (2). Now, as H is a closed
subspace of the Hilbert space L2(µ), we have that L2(µ) = H ⊕ H⊥. Thus, for f ∈ L2(µ)
we have the decomposition f = fH + fH⊥ where fH is the projection of f on H. Notice that
1 ∈ H, which implies that 0 = ⟨1, fH⊥⟩ =

∫
fH⊥dµ, and therefore∫

fdµ =

∫
fH.

Now, we compute the limit:

ĺım
n→∞

⟨1A ◦ Tn, f⟩ = ĺım
n→∞

⟨1A ◦ Tn, fH⟩+ ⟨1A ◦ Tn, fH⊥⟩

= ĺım
n→∞

⟨1A ◦ Tn, fH⟩+ 0

= µ(A)

∫
fHdµ = µ(A)

∫
fdµ,

and the conclusion follows.

P4. Let X be a compact metric space, and let T : X → X be continuous. Suppose that µ is a
T -invariant ergodic probability measure defined on the Borel subsets of X. Prove the following:

(a) The support of the measure µ, defined as

supp(µ) = X \
( ⋃

U⊆X open

µ(U)=0

U
)
,

has full measure.

We prove this in the more general setting where (X, d) is a separable metric space. Given
a dense sequence xn on X, the sequence of open balls

(
B(xn,

1
m)
)
m,n∈N forms a countable

base for the topology on (X, d) (meaning every open set contains an open ball from our
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countable collection). This is an easy consequence of the triangle inequality: if U is open,
there exists v ∈ U,m ∈ N such that B(v, 1

m) ⊂ U and we can also find xn such that
d(xn, v) <

1
2m from which we derive B(xn,

1
2m) ⊂ U .

We denote (Vn)n this countable base of X for convenience. Then notice that for every
U ⊆ X open with µ(U) = 0, we can write

U =
⋃

n∈N, Vn⊆U

Vn.

Observe that Vn ⊆ U implies µ(Vn) = 0. Therefore, we conclude that( ⋃
U⊆X open

µ(U)=0

U
)
=
( ⋃

n∈N
µ(Vn)=0

Vn

)
.

As the right-hand side of the equation is a countable union of sets of measure 0, we
conclude that this set has measure 0. It follows that µ(supp(µ)) = 1.

(b) For µ-almost every x ∈ X and for every y ∈ supp(µ), there exists a sequence nk ↗ ∞ such
that Tnkx → y as k → ∞.

Solution: We want to prove that

A = {x ∈ X : for all y ∈ supp(µ) there exists nk → +∞ such that Tnkx → y}

has full measure. We would like to take countable many y ∈ supp(µ), in order to reduce
the statement to an easier one. For this we note that supp(µ) is compact by being a closed
subset of a compact set. Thus, supp(µ) is separable and we can take (yn)n ⊆ supp(µ) to
a dense sequence in Y . Define

B = {x ∈ X : for all m ∈ N there exists nk → +∞ such that Tnkx → ym }.

Clearly A ⊆ B. We will prove that A = B. For the reverse inclusion, let x ∈ B,
y ∈ supp(µ), and ε > 0. By density, there exists m ∈ N, such that d(yn, y) < ε. Since
ym ∈ supp(µ), there exists a sequence nk → +∞, such that Tnkx → ym. Thus, for all k
sufficiently large, we have d(Tnkx, ym) < ε/2. We infer that

d(Tnkx, y) ≤ d(Tnkx, ym) + d(ym, y) <
ε

2
+

ε

2
< ε.

Therefore, for any ε > 0 there exists n ∈ N such that d(Tnx, y) < ε which readily implies
that y ∈ {Tnx : n ∈ N}. We conclude that x ∈ A and thus B ⊆ A, as we claimed.

It suffices to show that B has full measure. Notice that

X \B ⊆
⋃
m∈N

⋃
k∈N

⋂
n∈N

(
X \ T−nB(ym,

1

k
)

)
.

Since all unions are countable, it suffices to show that

µ

(⋂
n∈N

X \ T−nB

(
ym,

1

k

))
= 0 ⇐⇒ µ

(⋃
n∈N

T−nB

(
ym,

1

k

))
= 1.
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Since ym ∈ supp(µ), we have that µ
(
B
(
ym, 1k

))
> 0. Observe that the set

⋃
n∈N T−nB

(
ym, 1k

)
is T -invariant and due to ergodicity it has measure zero or 1. However, it cannot have
measure 0, since µ

(
B
(
ym, 1k

))
> 0. The conclusion follows.
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